Quiz 1 Solution


Problem 1. Let \(\vec{a}=\left(6,4,2\right),\quad \vec{b}=\left(-9,6,3\right),\quad \vec{c}=\left(-3,6,3\right)\).

(a) Compute \(2\vec{a}-\vec{b}+\vec{c}\) and \(-3\vec{a}+2\vec{b}+4\vec{c}\).

Solution.

\begin{align*} 2\vec{a}-\vec{b}+\vec{c} &= \left(12+9-3, 8-6+6, 4-3+3\right)=\left(18, 8, 4\right),\\ -3\vec{a}+2\vec{b}+4\vec{c} &= \left(-18-18-12, -12+12+24, -6+6+12\right)=\left(-48, 24, 12\right). \end{align*}

(b) Do \(\vec{a},\vec{b},\vec{c}\) lie on the same plane? Show your computation.

Solution. Yes. Check the volume of the parallelepiped spanned by \(\vec{a},\vec{b},\vec{c}\):

\begin{align*} \vec{a}\times\vec{b}\cdot\vec{c} =\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \notag \end{vmatrix} =\begin{vmatrix} 6 & 4 & 2 \\ -9 & 6 & 3 \\ -3 & 6 & 3 \notag \end{vmatrix}=0. \end{align*}

(If you notice that the second column is a scalar multiple of the third column, you can deduce that the determinant must be \(0\) — without any computation.)


Problem 2. Find the distance from the point \(\left(0,2,1\right)\) to the plane \(2x-3y+5z-1=0\). (Hint: The only formula you need is the dot product. Keep \(\sqrt{38}\) as it is.)

Solution. Let \(P\) be an arbitrary point on the plane, say \(P=\left(-1,-1,0\right)\). The distance from \(A=\left(0,2,1\right)\) equals to the absolute value of the component of the vector \(\overrightarrow{AP}\) along the normal vector of the plane.

pointPlaneDistance
A normal vector of the plane can be chosen as \(\vec{n}=\left(2,-3,5\right)\). Moreover, \(\overrightarrow{AP}=\overrightarrow{OP}-\overrightarrow{OA}=\left(-1,-3,-1\right)\). Thus the desired distance is

$$\left|\mathrm{comp}_{\vec{n}}\,\overrightarrow{AP}\right|=\frac{\left|\overrightarrow{AP}\cdot\vec{n}\right|}{\left|\vec{n}\right|}=\frac{\left|-2+9-5\right|}{\sqrt{38}}=\frac{2}{\sqrt{38}}.$$

Problem 3. Consider a point \(M\) in the same plane as the triangle \(ABC\). Show that there exist real numbers \(\lambda,\mu,\nu\) such that

$$\overrightarrow{OM}=\lambda \overrightarrow{OA}+\mu\overrightarrow{OB}+\nu\overrightarrow{OC}$$

and

$$\lambda + \mu + \nu = 1.$$

(Hint: \(\overrightarrow{AM}\) lies in the plane spanned by \(\overrightarrow{AB}\) and \(\overrightarrow{AC}\).)

triangle

Proof. Since \(M\) in the same plane as the triangle \(ABC\), \(\overrightarrow{AM}\) lies in the plane spanned by \(\overrightarrow{AB}\) and \(\overrightarrow{AC}\). Thus there exists real numbers \(s,t\) such that

\begin{equation}\label{eq:linearDependent} \overrightarrow{AM} = s\,\overrightarrow{AB} + t\,\overrightarrow{AC}. \end{equation}

Note that

\begin{align*} \overrightarrow{AM} &= \overrightarrow{OM}-\overrightarrow{OA},\\ \overrightarrow{AB} &= \overrightarrow{OB}-\overrightarrow{OA},\\ \overrightarrow{AC} &= \overrightarrow{OC}-\overrightarrow{OA}, \end{align*}

thus \eqref{eq:linearDependent} reduces to

$$\left(\overrightarrow{OM}-\overrightarrow{OA}\right) = s\left(\overrightarrow{OB}-\overrightarrow{OA}\right) + t\left(\overrightarrow{OC}-\overrightarrow{OA}\right).$$

Re-grouping terms involving \(\overrightarrow{OA}\), \(\overrightarrow{OB}\), \(\overrightarrow{OC}\), one has

$$\overrightarrow{OM}=\left(1-s-t\right) \overrightarrow{OA}+s\,\overrightarrow{OB}+t\,\overrightarrow{OC}.$$

Set

$$\lambda = 1-s-t,\quad \mu=s,\quad \nu=t,$$

then

$$\overrightarrow{OM}=\lambda \overrightarrow{OA}+\mu\overrightarrow{OB}+\nu\overrightarrow{OC}$$

and

$$\lambda + \mu + \nu = 1.$$

\(\blacksquare\)

useful links

social